Non-local reaction-diffusion equations with a barrier
نویسنده
چکیده
Non-local reaction-diffusion equations arise naturally to account for diffusions involving jumps rather than local diffusions related to Brownian motion. In ecology, long distance dispersal require such frameworks. In this work we study a one-dimensional non-local reaction-diffusion equation with bistable and monostable type reactions. The heterogeneity here from due to the presence of a barrier outside of which the equation is a classical homogeneous reaction-diffusion equation and is motivated by applications in ecology, sociology, and biology. In some finite interval, which we refer to as the barrier zone, there is decay. For bistable equations we first establish the existence of a generalized traveling front that approaches a traveling wave solution as t → −∞, propagating in a heterogeneous environment. We then study the problem of obstructing the propagation of the generalized traveling front. As in the local diffusion case, we prove that obstruction is possible for bistable equations but not for monostable equations. An interesting difference between the local dispersal and the non-local dispersal is that in the latter the obstructing steady states are discontinuous. We characterize these jump discontinuities and discuss the scaling between the range of the dispersal and the critical length of the barrier. We further explore other differences between the local and the non-local dispersal cases and state some open problems.
منابع مشابه
Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملSpectral properties of non-local differential operators
In this article we consider the spectral properties of a class of non-local operators that arise from the study of non-local reaction-diffusion equations. Such equations are used to model a variety of physical and biological systems with examples ranging from Ohmic heating to population dynamics. The operators studied here are bounded perturbations of linear (local) differential operators. The ...
متن کاملMagneto Prandtl nanofluid past a stretching surface with non-linear radiation and chemical reaction
In this article, we examined the behavior of chemical reaction effect on a magnetohydrodynamic Prandtl nanofluid flow due to stretchable sheet. Non-linear thermally radiative term is accounted in energy equation. Constructive transformation is adopted to formulate the ordinary coupled differential equations system. This system of equations is treated numerically through Runge Kutta Fehlberg-45 ...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملFree convective heat and mass transfer of magnetic bio-convective flow caused by a rotating cone and plate in the presence of nonlinear thermal radiation and cross diffusion
This article explores the heat and mass transfer behaviour of magnetohydrodynamic free convective flow past a permeable vertical rotating cone and a plate filled with gyrotactic microorganisms in the presence of nonlinear thermal radiation, thermo diffusion and diffusion thermo effects. We presented dual solutions for the flow over a rotating cone and a rotating flat plate cases. Similarity var...
متن کامل